
Package: patentsview (via r-universe)
September 18, 2024

Type Package

Title An R Client to the 'PatentsView' API

Version 0.3.0

Encoding UTF-8

Description Provides functions to simplify the 'PatentsView' API
(<https://patentsview.org/apis/purpose>) query language, send
GET and POST requests to the API's twelve endpoints, and parse
the data that comes back.

URL https://mustberuss.github.io/patentsview/index.html

BugReports https://github.com/ropensci/patentsview/issues

License MIT + file LICENSE

LazyData TRUE

Depends R (>= 3.1)

Imports data.table, httr, lifecycle, jsonlite, utils

Suggests dplyr, knitr, rlang, rmarkdown, testthat (>= 3.0.0), tidyr

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Repository https://mustberuss.r-universe.dev

RemoteUrl https://github.com/mustberuss/patentsview

RemoteRef api-redesign

RemoteSha 1c49efb6b6fbc246f81e4d560b98adf2dd0136ba

Contents
cast_pv_data . 2
fieldsdf . 3
get_endpoints . 3
get_fields . 4

1

https://patentsview.org/apis/purpose
https://mustberuss.github.io/patentsview/index.html
https://github.com/ropensci/patentsview/issues

2 cast_pv_data

get_ok_pk . 5
qry_funs . 5
retrieve_linked_data . 7
search_pv . 8
unnest_pv_data . 10
with_qfuns . 11

Index 13

cast_pv_data Cast PatentsView data

Description

This will cast the data fields returned by search_pv so that they have their most appropriate data
types (e.g., date, numeric, etc.).

Usage

cast_pv_data(data)

Arguments

data The data returned by search_pv. This is the first element of the three-element
result object you got back from search_pv. It should be a list of length 1, with
one data frame inside it. See examples.

Value

The same type of object that you passed into cast_pv_data.

Examples

Not run:

fields <- c("patent_date", "patent_title", "patent_year")
res <- search_pv(query = "{\"patent_id\":\"5116621\"}", fields = fields)
cast_pv_data(data = res$data)

End(Not run)

fieldsdf 3

fieldsdf Fields data frame

Description

A data frame containing the names of retrievable fields for each of the endpoints. You can find this
data on the API’s online documentation for each endpoint as well (e.g., the patent endpoint field list
table).

Usage

fieldsdf

Format

A data frame with the following columns:

endpoint The endpoint that this field record is for

field The complete name of the field, including the parent group if applicable

data_type The field’s input data type

group The group the field belongs to

common_name The field name without the parent group structure

get_endpoints Get endpoints

Description

This function reminds the user what the possible PatentSearch API endpoints are. (Note that the
API was originally know as the PatentsView API.)

Usage

get_endpoints()

Value

A character vector with the names of each endpoint.

https://search.patentsview.org/docs/docs/Search%20API/SearchAPIReference/#patent
https://search.patentsview.org/docs/docs/Search%20API/SearchAPIReference/#patent

4 get_fields

get_fields Get list of retrievable fields

Description

This function returns a vector of fields that you can retrieve from a given API endpoint (i.e., the
fields you can pass to the fields argument in search_pv). You can limit these fields to only cover
certain entity group(s) as well (which is recommended, given the large number of possible fields for
each endpoint).

Usage

get_fields(endpoint, groups = NULL)

Arguments

endpoint The API endpoint whose field list you want to get. See get_endpoints for a
list of the 7 endpoints.

groups A character vector giving the group(s) whose fields you want returned. A value
of NULL indicates that you want all of the endpoint’s fields (i.e., do not filter
the field list based on group membership). See the field tables located online to
see which groups you can specify for a given endpoint (e.g., the patents endpoint
table), or use the fieldsdf table (e.g., unique(fieldsdf[fieldsdf$endpoint
== "patent", "group"])).

Value

A character vector with field names.

Examples

Get all top level (non-nested) fields for the patent endpoint:
fields <- get_fields(endpoint = "patent", groups = "")

...Then pass to search_pv:
Not run:

search_pv(
query = '{"_gte":{"patent_date":"2007-01-04"}}',
fields = fields

)

End(Not run)
Get all patent and assignee-level fields for the patent endpoint:
fields <- get_fields(endpoint = "patent", groups = c("assignees", ""))

Not run:
...Then pass to search_pv:

https://search.patentsview.org/docs/docs/Search%20API/SearchAPIReference/#patent
https://search.patentsview.org/docs/docs/Search%20API/SearchAPIReference/#patent

get_ok_pk 5

search_pv(
query = '{"_gte":{"patent_date":"2007-01-04"}}',
fields = fields

)

End(Not run)

get_ok_pk Get OK primary key

Description

This function suggests a value that you could use for the pk argument in unnest_pv_data, based
on the endpoint you searched. It will return a potential unique identifier for a given entity (i.e., a
given endpoint). For example, it will return "patent_id" when endpoint = "patent".

Usage

get_ok_pk(endpoint)

Arguments

endpoint The endpoint which you would like to know a potential primary key for.

Value

The name of a primary key (pk) that you could pass to unnest_pv_data.

Examples

get_ok_pk(endpoint = "inventor") # Returns "inventor_id"
get_ok_pk(endpoint = "cpc_group") # Returns "cpc_group_id"

qry_funs List of query functions

Description

A list of functions that make it easy to write PatentsView queries. See the details section below for
a list of the 15 functions, as well as the writing queries vignette for further details.

Usage

qry_funs

../articles/writing-queries.html

6 qry_funs

Format

An object of class list of length 16.

Details

1. Comparison operator functions

There are 6 comparison operator functions that work with fields of type integer, float, date, or string:

• eq - Equal to

• neq - Not equal to

• gt - Greater than

• gte - Greater than or equal to

• lt - Less than

• lte - Less than or equal to

There are 2 comparison operator functions that only work with fields of type string:

• begins - The string begins with the value string

• contains - The string contains the value string

There are 3 comparison operator functions that only work with fields of type fulltext:

• text_all - The text contains all the words in the value string

• text_any - The text contains any of the words in the value string

• text_phrase - The text contains the exact phrase of the value string

2. Array functions

There are 2 array functions:

• and - Both members of the array must be true

• or - Only one member of the array must be true

3. Negation function

There is 1 negation function:

• not - The comparison is not true

4. Convenience function

There is 1 convenience function:

• in_range - Builds a <= x <= b query

Value

An object of class pv_query. This is basically just a simple list with a print method attached to it.

retrieve_linked_data 7

Examples

qry_funs$eq(patent_date = "2001-01-01")

qry_funs$not(qry_funs$eq(patent_date = "2001-01-01"))

qry_funs$in_range(patent_year = c(2010, 2021))

qry_funs$in_range(patent_date = c("1970-01-01", "1983-02-28"))

retrieve_linked_data Get Linked Data

Description

Some of the endpoints now return HATEOAS style links to get more data. E.g., the inventors
endpoint may return a link such as: "https://search.patentsview.org/api/v1/inventor/252373/"

Usage

retrieve_linked_data(url, api_key = Sys.getenv("PATENTSVIEW_API_KEY"), ...)

Arguments

url The link that was returned by the API on a previous call or an example in the
documentation.

api_key API key. See Here for info on creating a key.

... Arguments passed along to httr’s GET or POST function.

Value

A list with the following three elements:

data A list with one element - a named data frame containing the data returned by the server. Each
row in the data frame corresponds to a single value for the primary entity. For example, if
you search the assignees endpoint, then the data frame will be on the assignee-level, where
each row corresponds to a single assignee. Fields that are not on the assignee-level would be
returned in list columns.

query_results Entity counts across all pages of output (not just the page returned to you).

request Details of the HTTP request that was sent to the server. When you set all_pages = TRUE,
you will only get a sample request. In other words, you will not be given multiple requests for
the multiple calls that were made to the server (one for each page of results).

https://patentsview.org/apis/keyrequest

8 search_pv

Examples

Not run:

retrieve_linked_data(
"https://search.patentsview.org/api/v1/cpc_group/G01S7:4811/"

)

retrieve_linked_data(
'https://search.patentsview.org/api/v1/patent/?q={"_text_any":{"patent_title":"COBOL cotton gin"}}&s=[{"patent_id": "asc" }]&o={"size":50}&f=["inventors.inventor_name_last","patent_id","patent_date","patent_title"]'

)

End(Not run)

search_pv Search PatentsView

Description

This function makes an HTTP request to the PatentsView API for data matching the user’s query.

Usage

search_pv(
query,
fields = NULL,
endpoint = "patent",
subent_cnts = FALSE,
mtchd_subent_only,
page,
per_page = 1000,
all_pages = FALSE,
sort = NULL,
method = "GET",
error_browser = NULL,
api_key = Sys.getenv("PATENTSVIEW_API_KEY"),
...

)

Arguments

query The query that the API will use to filter records. query can come in any one of
the following forms:

• A character string with valid JSON.
E.g., '{"_gte":{"patent_date":"2007-01-04"}}'

• A list which will be converted to JSON by search_pv.
E.g., list("_gte" = list("patent_date" = "2007-01-04"))

search_pv 9

• An object of class pv_query, which you create by calling one of the func-
tions found in the qry_funs list...See the writing queries vignette for de-
tails.
E.g., qry_funs$gte(patent_date = "2007-01-04")

fields A character vector of the fields that you want returned to you. A value of
NULL indicates that the default fields should be returned. Acceptable fields for a
given endpoint can be found at the API’s online documentation (e.g., check out
the field list for the patents endpoint) or by viewing the fieldsdf data frame
(View(fieldsdf)). You can also use get_fields to list out the fields available
for a given endpoint.

endpoint The web service resource you wish to search. Use get_endpoints() to list the
available endpoints.

subent_cnts [Deprecated] Non-matched subentities will always be returned under the new
version of the API

mtchd_subent_only

[Deprecated] This is always FALSE in the new version of the API.
page [Deprecated] The page number of the results that should be returned.
per_page The number of records that should be returned per page. This value can be as

high as 1,000 (e.g., per_page = 1000).
all_pages Do you want to download all possible pages of output? If all_pages = TRUE,

the value per_page is ignored.
sort A named character vector where the name indicates the field to sort by and

the value indicates the direction of sorting (direction should be either "asc" or
"desc"). For example, sort = c("patent_id" = "asc") or
sort = c("patent_id" = "asc", "patent_date" = "desc"). sort = NULL (the
default) means do not sort the results. You must include any fields that you wish
to sort by in fields.

method The HTTP method that you want to use to send the request. Possible values
include "GET" or "POST". Use the POST method when your query is very long
(say, over 2,000 characters in length).

error_browser [Deprecated]
api_key API key. See Here for info on creating a key.
... Arguments passed along to httr’s GET or POST function.

Value

A list with the following three elements:

data A list with one element - a named data frame containing the data returned by the server. Each
row in the data frame corresponds to a single value for the primary entity. For example, if
you search the assignees endpoint, then the data frame will be on the assignee-level, where
each row corresponds to a single assignee. Fields that are not on the assignee-level would be
returned in list columns.

query_results Entity counts across all pages of output (not just the page returned to you).
request Details of the HTTP request that was sent to the server. When you set all_pages = TRUE,

you will only get a sample request. In other words, you will not be given multiple requests for
the multiple calls that were made to the server (one for each page of results).

../articles/writing-queries.html
https://search.patentsview.org/docs/docs/Search%20API/SearchAPIReference#patent
https://patentsview.org/apis/keyrequest

10 unnest_pv_data

Examples

Not run:

search_pv(query = '{"_gt":{"patent_year":2010}}')

search_pv(
query = qry_funs$gt(patent_year = 2010),
fields = get_fields("patent", c("", "assignees"))

)

search_pv(
query = qry_funs$gt(patent_year = 2010),
method = "POST",
fields = "patent_id",
sort = c("patent_id" = "asc")

)

search_pv(
query = qry_funs$eq(inventor_name_last = "Crew"),
endpoint = "inventor",
all_pages = TRUE

)

search_pv(
query = qry_funs$contains(assignee_individual_name_last = "Smith"),
endpoint = "assignee"

)

search_pv(
query = qry_funs$contains(inventors.inventor_name_last = "Smith"),
endpoint = "patent",
config = httr::timeout(40)

)

End(Not run)

unnest_pv_data Unnest PatentsView data

Description

This function converts a single data frame that has subentity-level list columns in it into multiple
data frames, one for each entity/subentity. The multiple data frames can be merged together using
the primary key variable specified by the user (see the relational data chapter in "R for Data Science"
for an in-depth introduction to joining tabular data).

Usage

unnest_pv_data(data, pk = get_ok_pk(names(data)))

https://r4ds.had.co.nz/relational-data.html

with_qfuns 11

Arguments

data The data returned by search_pv. This is the first element of the three-element
result object you got back from search_pv. It should be a list of length 1, with
one data frame inside it. See examples.

pk The column/field name that will link the data frames together. This should be
the unique identifier for the primary entity. For example, if you used the patent
endpoint in your call to search_pv, you could specify pk = "patent_id". This
identifier has to have been included in your fields vector when you called
search_pv. You can use get_ok_pk to suggest a potential primary key for your
data.

Value

A list with multiple data frames, one for each entity/subentity. Each data frame will have the pk
column in it, so you can link the tables together as needed.

Examples

Not run:

fields <- c("patent_id", "patent_title", "inventors.inventor_city", "inventors.inventor_country")
res <- search_pv(query = '{"_gte":{"patent_year":2015}}', fields = fields)
unnest_pv_data(data = res$data, pk = "patent_id")

End(Not run)

with_qfuns With qry_funs

Description

This function evaluates whatever code you pass to it in the environment of the qry_funs list.
This allows you to cut down on typing when writing your queries. If you want to cut down on
typing even more, you can try assigning the qry_funs list into your global environment with:
list2env(qry_funs, envir = globalenv()).

Usage

with_qfuns(code, envir = parent.frame())

Arguments

code Code to evaluate. See example.

envir Where should R look for objects present in code that aren’t present in qry_funs.

12 with_qfuns

Value

The result of code - i.e., your query.

Examples

qry_funs$and(
qry_funs$gte(patent_date = "2007-01-01"),
qry_funs$text_phrase(patent_abstract = c("computer program")),
qry_funs$or(

qry_funs$eq(inventors.inventor_name_last = "Ihaka"),
qry_funs$eq(inventors.inventor_name_last = "Chris")

)
)

...With it, this becomes:
with_qfuns(

and(
gte(patent_date = "2007-01-01"),
text_phrase(patent_abstract = c("computer program")),
or(

eq(inventors.inventor_name_last = "Ihaka"),
eq(inventors.inventor_name_last = "Chris")

)
)

)

Index

∗ datasets
fieldsdf, 3
qry_funs, 5

cast_pv_data, 2

fieldsdf, 3

GET, 7, 9
get_endpoints, 3, 4
get_fields, 4, 9
get_ok_pk, 5, 11

POST, 7, 9

qry_funs, 5, 9, 11

retrieve_linked_data, 7

search_pv, 2, 4, 8, 11

unnest_pv_data, 5, 10

with_qfuns, 11

13

	cast_pv_data
	fieldsdf
	get_endpoints
	get_fields
	get_ok_pk
	qry_funs
	retrieve_linked_data
	search_pv
	unnest_pv_data
	with_qfuns
	Index

